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PART A (10 × 2 = 20 Marks)

1. Determine whether the subset S = {(x, y, 0)|x and y are real numbers} of the vector space
V = R3 is a subspace or not.

2. For which values of k will the vector v = (1,−2, k) in R3 be a linear combination of the
vectors u = (3, 0,−2) and w = (2,−1,−5).

3. Find the matrix representation of a linear transformation T : P3(R) → P2(R) defined by
T (f(x)) = f ′(x) with respect to the standard ordered bases for P3(R) and P2(R).

4. Is there a linear transformation T : R3 → R2 such that T (1, 0, 3) = (1, 1) and
T (−2, 0,−6) = (2, 1)? Justify.

5. Prove that ||α + β|| ≤ ||α|| + ||β|| for any two vectors α, β belong to the standard inner
product space.

6. Find the orthogonal complement of S = (0, 0, 1) in an inner product space R3.

7. Obtain the partial differential equation by eliminating the arbitrary function from
z = f(x2 + y2).

8. Find the complete solution of p2 + q2 = 4.

9. State Dirichlet’s conditions for a function f(x) to be expressed as a Fourier series.

10. Solve x2 ∂z

∂x
+ y3

∂z

∂y
= 0 by method of separation of variables.

PART-B (5×16=80 Marks)

11. (a) (i) Let V = R3 and S1 = {(1, 0, 0), (2, 2, 0), (5, 7, 2)}. Show that S1 is a minimal
generating set. (8)

(ii) Verify whether the set S =

{(
1 −3 2
−4 0 5

)
,

(
−3 7 4
6 −2 −7

)
,

(
−2 3 11
−1 −3 2

)}
in M2×3(R) is linearly dependent or not. (6) (8)
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(OR)

(b) (i) Let V = R3 and S1 = {(1, 0, 0), (2, 2, 0), (5, 7, 2)}. Show that S1 is a minimal
generating set. (8)

(ii) Let V = R3, W1 = {(x, x, x)/x ∈ R} and W2 = {(0, y, z)/y, z ∈ R} are two
subspaces of V , then prove that V = W1 ⊕W2. (8)

12. (a) Let T : R2 → R3 and U : R2 → R3 be the linear transformations defined by
T (a1, a2) = (a1 + 3a2, 0, 2a1 − 4a2) and U(a1, a2) = (a1 − a2, 2a1, 3a1 + 2a2) respec-
tively. Then prove that [T + U ]γB = [T ]γB + [U ]γB. (16)

(OR)

(b) Let T be a linear operator on P2(R) defined by T [f(x)] = f(1)+f ′(0)x[f ′(0)+f ′′(0)]x2.
Test for diagonalizability. (16)

13. (a) Let V = P (R) with the inner product < f(x), g(x) >=

∫ 1

−1

f(t)g(t)dt. Consider the

sub space P2(R) with standard ordered basis B. Use the Gram-Schmidt process to
replace B by an orthogonal basis {v1, v2, v3} for P2(R) and use that orthogonal basis
to obtain an orthonormal basis for P2(R). (16)

(OR)

(b) (i) Let V = C3 where C is the set of complex numbers. Define < x, y >= a1b1 +
a2b2 + a3b3 where x = (a1, a2, a3) and y = (b1, b2, b3). Verify whether V is an inner
product space or not. (8)

(ii) Let V be a finite dimensional inner product space, and let T be a linear operator
on V . Then show that there exists a unique linear function T ∗ : V → V such that
< T (x), y >=< x, T ∗(y) > for all x, y ∈ V . (8)

14. (a) (i) Solve:(D2 +DD′ − 6D′2)z = y cos x. (8)

(ii) Find the singular integral of z = px+ qy +
√

1 + p2 + q2. (8)

(OR)

(b) (i) Find the integral surface of the equation 2y(z − 3)p + (2x − z)q = y(2x − 3) that
passes through the circle x2 + y2 = 2x and z = 0. (8)

(ii) Find the complete solution of x2p2 + y2q2 = z2. (8)

15. (a) A rectangular plate 0 ≤ x ≤ 20, 0 ≤ y ≤ 10 has the edges x = 0, x = 20, y = 0
maintained at zero temperature and the edge y = 10 has the temperature u = 20x−x2.
Find the steady state temperature at any point (x, y) on the plate. (16)

(OR)

(b) (i) Obtain the Fourier series for the function f(x) = |x|, − π < x < π. (8)

(ii) Express f(x) = x(π−x), 0 < x < π, as a Fourier series of periodicity 2π containing
cosine terms only. (8)

∗ ∗ ∗ ∗ ∗ ∗ ∗
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